5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

равносильны ли уравнения

Равносильные уравнения и уравнения-следствия

Существуют преобразования уравнений, позволяющие переходить от решаемого уравнения к так называемым равносильным уравнениям и уравнениям-следствиям, по решениям которых есть возможность определить решение исходного уравнения. В этой статье мы подробно разберем, какие уравнения называются равносильными, а какие – уравнениями-следствиями, дадим соответствующие определения, приведем поясняющие примеры и объясним, как найти корни уравнения по известным корням равносильного уравнения и уравнения-следствия.

Равносильные уравнения, определение, примеры

Дадим определение равносильных уравнений.

Равносильные уравнения – это уравнения, имеющие одни и те же корни или не имеющие корней.

Такие же по смыслу определения, но немного отличающиеся по формулировке, приводятся в различных учебниках математики, например,

Два уравнения f(x)=g(x) и r(x)=s(x) называют равносильными, если они имеют одинаковые корни (или, в частности, если оба уравнения не имеют корней) [1, с. 179].

Уравнения, имеющие одни и те же корни, называют равносильными уравнениями. Уравнения, не имеющие корней, также считают равносильными [2, с. 23].

Два уравнения с одной переменной f(x)=g(x) и p(x)=h(x) называют равносильными, если множества их корней совпадают [3, с. 201].

Уравнения, имеющие одно и то же множество корней, называются равносильными [4, с. 186].

Под одними и теми же корнями понимается следующее: если какое-то число является корнем одного из равносильных уравнений, то оно является и корнем любого другого из этих уравнений, и не одно из равносильных уравнений не может иметь корня, который не является корнем любого другого из этих уравнений.

Приведем примеры равносильных уравнений. Например, три уравнения 4·x=8 , 2·x=4 и x=2 – равносильные. Действительно, каждое из них имеет единственный корень 2 , поэтому они равносильны по определению. Еще пример: равносильными являются два уравнения x·0=0 и 2+x=x+2 , множества их решений совпадают: корнем и первого и второго из них является любое число. Два уравнения x=x+5 и x 4 =−1 также представляют собой пример равносильных уравнений, они оба не имеют действительных решений.

Для полноты картины стоит привести примеры не равносильных уравнений. Например, не равносильны уравнения x=2 и x 2 =4 , так как второе уравнение имеет корень −2 , который не является корнем первого уравнения. Уравнения и также не являются равносильными, так как корнями второго уравнения являются любые числа, а число нуль не является корнем первого уравнения.

Озвученное определение равносильных уравнений относится как к уравнениям с одной переменной, так и к уравнениям с большим числом переменных. Однако для уравнений с двумя, тремя и т.д. переменными слово «корни» в определении нужно заменить словом «решения». Итак,

Равносильные уравнения – это уравнения, имеющие одни и те же решения, или не имеющие их.

Покажем пример равносильных уравнений с несколькими переменными. x 2 +y 2 +z 2 =0 и 5·x 2 +x 2 ·y 4 ·z 8 =0 – вот пример равносильных уравнений с тремя переменными x , y и z , они оба имеют единственное решение (0, 0, 0) . А вот уравнения с двумя переменными x+y=5 и x·y=1 не являются равносильными, так как, например, пара значений x=2 , y=3 является решением первого уравнения (при подстановке этих значений в первое уравнение получаем верное равенство 2+3=5 ), но не является решением второго (при подстановке этих значений во второе уравнение получаем неверное равенство 2·3=1 ).

Читать еще:  Сколько кот может прожить без воды

Уравнения-следствия

Приведем определения уравнений-следствий из школьных учебников:

Если каждый корень уравнения f(x)=g(x) является в то же время корнем уравнения p(x)=h(x) , то уравнение p(x)=h(x) называют следствием уравнения f(x)=g(x) [3, с. 202].

Если все корни первого уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого уравнения [4, с. 187].

Приведем пару примеров уравнений-следствий. Уравнение x 2 =3 2 является следствием уравнения x−3=0 . Действительно, второе уравнение имеет единственный корень x=3 , этот корень является и корнем уравнения x 2 =3 2 , поэтому по определению уравнение x 2 =3 2 – это следствие уравнения x−3=0 . Другой пример: уравнение (x−2)·(x−3)·(x−4)=0 – это следствие уравнения , так как все корни второго уравнения (их два, это 2 и 3 ), очевидно, являются корнями первого уравнения.

Из определения уравнения-следствия вытекает, что абсолютно любое уравнение является следствием любого уравнения, не имеющего корней.

Стоит привести несколько довольно очевидных следствий из определения равносильных уравнений и определения уравнения-следствия:

  • Если два уравнения равносильны, то каждое из них является следствием другого.
  • Если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.
  • Два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

Нахождение корней уравнения по корням равносильного уравнения и уравнения-следствия

Из определения равносильных уравнений следует, что если известны все корни одного из равносильных уравнений, то можно считать известными все корни всех остальных уравнений этой группы: они будут такими же.

Когда известны все корни уравнения-следствия, то есть возможность определить все корни уравнения, следствием которого является данное уравнение. Для этого нужно лишь провести отсеивание посторонних корней.

Равносильные уравнения

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое “Равносильные уравнения” в других словарях:

РАВНОСИЛЬНЫЕ УРАВНЕНИЯ — уравнения, имеющие одно и то же множество корней (в случае кратных корней нужно, чтобы кратности соответствующих корней совпадали). Так, из трех уравнений , 3х 7 = 5, (х 4)2 = 0 первое и второе равносильные уравнения, а первое и третье не… … Большой Энциклопедический словарь

равносильные уравнения — уравнения, имеющие одно и то же множество корней (в случае кратных корней нужно, чтобы кратности соответствующих корней совпадали). Так, из трёх уравнений , 3х 7 = 5, (х 4)2 = 0 первое и второе равносильные уравнения, а первое и третье не… … Энциклопедический словарь

РАВНОСИЛЬНЫЕ УРАВНЕНИЯ — ур ния, имеющие одно и то же множество корней (в случае кратных корней нужно, чтобы кратности соотв. корней совпадали). Так, из трёх ур ний корень из х=2, 3х 7 = 5, (х 4)2 = 0 первое и второе Р. у., а первое и третье не Р. у. (т. к. кратность… … Естествознание. Энциклопедический словарь

Читать еще:  От кого передается интеллект ребенку

Эквивалентные уравнения — то же, что Равносильные уравнения … Большая советская энциклопедия

Уравнение — Первое печатное появление знака равенства в книге Роберта Рекорда в 1557 году (записано уравнение ) Уравнение это равенство вида или, в приведённой форме … Википедия

Уравнение — в математике, аналитическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются обычно неизвестными, а значения неизвестных, при которых… … Большая советская энциклопедия

Посторонний корень — (математический) корень (решение) одного из промежуточных уравнений (т. е. получающихся в процессе решения данного уравнения), не являющийся корнем этого данного уравнения. Появление П. к. связано с тем, что при решении не всегда удаётся … Большая советская энциклопедия

Неравенство — О неравенствах в социально экономическом смысле см. Социальное неравенство. В математике неравенство (≠) есть утверждение об относительной величине или порядке двух объектов, или о том, что они просто не одинаковы (см. также Равенство).… … Википедия

Интеграл — Определённый интеграл как площадь фигуры У этого термина существуют и другие значения, см. Интеграл (значения). Интеграл функции … Википедия

Равносильные уравнения, преобразование уравнений

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Понятие равносильных уравнений

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .

Читать еще:  Как выбрать электрический краскопульт

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Если первое уравнение имеет те же корни, что и второе, то второе будет уравнением-следствием первого.

Возьмем несколько примеров таких уравнений.

Так, x · 2 = 32 будет следствием x − 3 = 0 , поскольку в первом есть только один корень, равный трем, и он же будет корнем второго уравнения, поэтому в контексте данного определения одно уравнение будет следствием другого. Еще один пример: уравнение ( x − 2 ) · ( x − 3 ) · ( x − 4 ) = 0 будет следствием x – 2 · x – 3 · x – 4 2 x – 4 , потому что второе уравнение имеет два корня, равные 2 и 3 , которые в то же время будут корнями первого.

Из данного выше определения можно сделать вывод, что следствием любого уравнения, не имеющего корней, будет также любое уравнение. Приведем здесь некоторые другие следствия из всех сформулированных в данной статье правил:

  1. Если одно уравнение равносильно другому, то каждое из них будет следствием другого.
  2. Если из двух уравнений каждое будет следствием другого, то данные уравнения будут равносильны друг другу.
  3. Уравнения будут равносильны по отношению друг к другу только в том случае, если каждое из них будет следствием другого.

Как найти корни уравнения по корням уравнения-следствия или равносильного уравнения

Исходя из того, что мы написали в определениях, то в случае, когда мы знаем корни одного уравнения, то нам известны и корни равносильных ему, поскольку они будут совпадать.

Если мы знаем все корни уравнения-следствия, то можем определить корни второго уравнения, следствием которого оно является. Для этого нужно только отсеять посторонние корни. О том, как это делается, мы написали отдельную статью. Советуем вам ее прочитать.

Источники:

http://www.cleverstudents.ru/equations/equivalent_equations.html
http://dic.academic.ru/dic.nsf/bse/125596/%D0%A0%D0%B0%D0%B2%D0%BD%D0%BE%D1%81%D0%B8%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5
http://zaochnik.com/spravochnik/matematika/systems/ravnosilnye-uravnenija-preobrazovanie-uravnenij/

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: