3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какова цикличность солнечной активности

Солнечные циклы

Активность нашей звезды временами меняется, и происходит это с определённой периодичностью. Эти периоды и называют солнечными циклами. За солнечные циклы отвечает магнитное поле звезды. Вращение Солнца отличается от вращения твёрдых тел. Разные области звезды обладают различными скоростями, что и определяет величину поля. И оно проявляется в фотосфере солнечными пятнами. Каждый цикл характеризуется сменой полярности магнитного поля.

Известные циклы активности

Одиннадцатилетний

Этот период активности Солнца самый известный и более изученный. Также его называют законом Швабе-Вольфа, отдавая дань первооткрывателю этой периодичности светила. Название «одиннадцатилетний» несколько условно для данного цикла. Продолжительность его, например, в XVIII – XX веках колебалась от 7 до 17 лет, а в веке ХХ среднее значение составило 10,5 лет. В первые четыре года цикла происходит активное увеличение количества солнечных пятен. Также учащаются вспышки, число волокон и протуберанцев. В следующий период (около семи лет) количество пятен и активность уменьшаются. 11-летние циклы имеют различные высоты в максимумах. Их принято измерять в относительных числах Вольфа. Самым высоким индексом за всё время наблюдений отметился 19-й цикл. Его значение составило 201 единица, при минимуме около 40.

Двадцатидвухлетний

По сути, это двойной цикл Швабе. Он связывает пятна и магнитные поля звезды. Каждые 11 лет изменяется знак магнитного поля и положение магнитных полярностей групп пятен. Для возврата общего магнитного поля в начальное положение требуется два цикла Швабе, или 22 года.

Вековой

Этот цикл продолжается от 70 до 100 лет. Это модуляция одиннадцатилетних циклов. В середине прошлого века был максимум такого цикла, и следующий придётся на середину века нынешнего. Отмечена и двухвековая цикличность. В её минимумы (периоды около 200 лет) наблюдаются устойчивые ослабления солнечной активности. Они длятся десятки лет и носят название глобальных минимумов.

Влияние на нашу жизнь

Как считает М. Гухатхакурта, астрофизик НАСА, не только солнечные максимумы воздействуют на нашу жизнь, но и минимумы тоже. Чередование фаз изменения солнечной активности имеет свою специфику и вредные последствия. В солнечные циклы, на максимумах, обостряются риски сбоя в работе различного оборудования. Более интенсивное ультрафиолетовое облучение нагревает атмосферу, увеличивая её объём. Усиливается лобовое сопротивление, воздействующее на спутники и на МКС. Они мощнее притягиваются к Земле, и приходится корректировать их орбиты. Но от этого есть и некоторая польза: Из-за усиления притяжения космический мусор также устремляется к планете, сгорая в плотных атмосферных слоях.

В минимумы циклов интенсивность ультрафиолетового излучения падает, и от этого атмосфера Земли охлаждается и уменьшается в объёме. Солнечный ветер ослабевает, но усиливается поток космических лучей.

Опубликованы данные норвежских учёных, из которых вытекает, что люди, рождённые в год спокойного Солнца, живут дольше примерно на 5 лет. Были отслежены время рождения и смерти 8600 человек в двух населённых пунктах за период от 1676 до 1878 годов. Этот период выбрали потому, что на него существуют данные за 11-летний цикл активности Солнца. Но механизм влияния активности Солнца на продолжительность жизни пока не ясен.

С цикличностью солнечной активности тесно связаны глобальные события, происходящие на нашей планете. Самые известные эпидемии чумы, холеры, а также учащение наводнений и засух приходятся именно на максимумы активности Солнца. С этим явлением связываются и социальные потрясения. Революции и большие войны тоже укладываются в систему цикличности.

Сбои циклов

Но не всё вписывается в рамки цикличности. Солнце имеет свой характер, и иногда проявляется его своеобразие. Например, 23-й солнечный цикл должен был завершиться в 2007 – 2008 годах. Но не завершился, и чем вызван такой феномен, пока не понятно. Получается, что солнечные циклы – незакономерная закономерность нашего светила.

С середины 2006 до середины 2009 годов Солнце было в глубоком минимуме. Этот период характерен несколькими рекордами спада активности. Отмечались наименьшие показатели скорости солнечного ветра. Наблюдалось максимальное число дней без пятен. Активность вспышек упала к нулю. Из этого вытекают возможные варианты дальнейшего поведения Солнца. Если считать, что в каждом цикле звезда высвобождает определенное количество энергии, то после нескольких лет пассивности, она должна эту энергию выбросить. То есть, новый цикл должен быть очень быстрым и достичь высочайших значений.

Предельно высокие максимумы за все годы наблюдений не фиксировались. А вот исключительные минимумы отмечались. Из этого следует, что провал активности – намёк на сбой солнечных циклов.

Какова цикличность солнечной активности

К 1843 г. Генрих Швабе [Schwabe, Heinrich Samuel] аптекарь и астроном-любитель из Дессау (Германия) собрал достаточно много данных для того, чтобы подтвердить долгое время существовавшее предположение о регулярных флуктуациях числа солнечных пятен. Швабе показал, что число пятен на диске меняется циклически, достигая максимума примерно через каждые одиннадцать лет.

Следующим, кто внес существенный вклад в исследование солнечных пятен, был Рудольф Вольф [Rudolf Wolf], швейцарский астроном, который в середине XIX столетия собрал все, какие только мог, данные о пятнах и привел их к удобному виду. Он установил, что средний период цикла равен 11,1 года.

Читать еще:  Как проявляется послеродовая депрессия

Изменения числа солнечных пятен (чисел Вольфа) за достаточно длинный промежуток времени не только выявляют 11-летний цикл пятен, но и указывают на возможное присутствие цикла, с периодом около 80 лет, который был обнаружен в конце XIX века пулковским астрономом А.П. Ганским.

Для того чтобы придать смысл субъективному суждению о степени запятненности Солнца, определение числа солнечных пятен, данное Вольфом, используется до сих пор. Это число, определяющее меру солнечной запятненности, принимает во внимание как число групп солнечных пятен, так и число самих пятен, наблюдавшихся в данный день. Каждая группа принимается за десять единиц, а каждое пятно — за единицу. Общий отсчет за день — число солнечных пятен Вольфа; оно может быть и столь малым, как нуль, и столь большим, как 200.

На каком основании Вольф выбрал для группы значение, равное десяти? Он должен был что-то выбрать— и в этом вся причина; хотя у его выбора нет физической основы, но схема разумна и позволяет за счет введения большего веса для групп пятен учитывать степень объединения пятен в группы.

астрономы до сих пор пользуются системой Вольфа. И последнее, что следует упомянуть: существует система корректировки числа пятен , с помощью которой учитываются отличия в индивидуальных свойствах наблюдателей, различие в оборудовании и погодных условиях. Кривая среднемесячного числа солнечных пятен совершенно отчетливо показывает периодическое изменение числа солнечных пятен.

В годы минимума на Солнце долгое время может не быть ни одного пятна, а в максимуме их число обычно измеряется десятками. Последний максимум солнечной активности, с многими пятнами и факелами, наблюдался около 2000 г. В 1989-1990 гг. их было очень много, поскольку на этот период пришелся пик цикла солнечной активности. В середине 1990-х гг. солнечных пятен было относительно немного. В 2000-2001 г. плотность пятен снова была наибольшей.

Английский астроном Эдвард Маундер [Edward Walter Maunder] впервые построил в 1922 г. диаграмму, называемой «бабочками Маундера». Она показывает зависимость широты солнечных пятен от времени (в солнечном цикле). Характерная форма диаграммы «бабочек Маундера» свидетельствует, что пятна постепенно смещаются к экватору. Отдельное пятно не движется; изменяется лишь средняя широта, на которой появляются пятна.


«Бабочки Маундера». Цветом показано число пятен в процентном соотношении

Сопоставление диаграммы «бабочек Маундера» с числами Вольфа
Для каждого месяца сумма черточек верхнего графика по вертикали
равна соответствующей высоте черточек нижнего графика

За последние 50 лет течение цикла несколько ускорилось (хотя и незначительно) и цикл уменьшился примерно до 10,5 лет. Усреднение за 200 лет дает период в 11,2 года. За последние 300 лет самый короткий период был равен 7 годам, самый длинный— 17. Другими словами, поведение цикла регулярно лишь в среднем. Если посмотреть на изменение чисел солнечных пятен за три столетия, то можно заметить, что в подъеме и спаде максимумов, по-видимому, существует некоторая система. Возможно, это указывает на то, что существует другой цикл, равный примерно 80 годам, который модулирует одиннадцатилетний и о котором мы в действительности ничего не узнаем в течение ближайших нескольких сотен лет. Заметим также, что подъем до вершины максимума занимает меньше времени (примерно четыре года), чем спад, который обычно продолжается около шести лет.
Хотя система счета Вольфа хорошо выдержала испытание временем, сегодня более разумно измерять солнечную активность количественными методами. Это именно то, чем занимаются в настоящее время обсерватории, которые ведут регулярные патрульные наблюдения за Солнцем, используя в качестве меры активности оценку площадей солнечных пятен в миллионных долях площади видимой солнечной полусферы.

Цикл активности солнечных пятен имеет прямое отношение к климату на Земле. У некоторых деревьев, например, толщина годовых колец тоже имеет 11-летний цикл. Между 1650–1715 гг. пятен на Солнце практически не было (минимум Маундера), солнечный цикл как будто совсем исчез. Это соответствует периоду исключительно холодной погоды в Европе. Объяснения минимума Маундера — одна из проблем современной астрофизики.


Ежегодное среднее число солнечных пятен за период 1610-2000 гг. (источник www.tesis.lebedev.ru)

Чтобы проверить воздействие 11-летнего солнечного цикла на наш климат, на спутнике был установлен специальный прибор, который измерял количество энергии, произведенной Солнцем за период 1980–1989 гг. Каждый раз, когда на Солнце появлялось большое пятно, количество энергии, излучаемое Солнцем, падало.

На этом графике представлены осредненные за месяц числа Вольфа W, соединенные тонкой линией. Черные точки — среднегодовые значения. Черная линия — прогноз. Фаза роста 3,5 г. Спада — 6 лет. Между двумя максимумами 1,5 г. (источник www.kosmofizika.ru/ucheba/sun_act.htm)

В 1990-2003 гг. и в последующие годы, естественно, проводились новые серии наблюдений с космических орбитальных телескопов. Ученые надеются, что эти измерения позволят ответить на вопрос, оказывают ли изменения солнечной активности долгосрочное воздействие на Землю — скажем, содействуют ли они глобальному потеплению на нашей планете.

Астрофизики строят новые современные модели солнечной активности, которые позволяют решить проблему циклической возобновляемости полоидального магнитного поля и дают возможность понять физическую причину «выключения» солнечного цикла — минимума типа маундеровского. С 2009 года ожидается начало нового 24-го цикла солнечной активности с момента начала наблюдений.

Читать еще:  Когда начинается учебный год в Германии

Эта современная версия диаграммы солнечных пятен «бабочка» за 135 лет наблюдений построена (и регулярно обновляется) солнечной группой Центра космических полетов им. Дж. Маршалла НАСА (Marshall Space Flight Center(MSFC) NASA).

Закон чередования магнитной полярности
Важнейшей особенностью цикла солнечной активности является закон изменения магнитной полярности пятен. В течение каждого 11-летнего цикла все ведущие пятна биполярных групп имеют некоторую одинаковую полярность в северном полушарии и противоположную в южном.

То же самое справедливо для хвостовых пятен, у которых полярность всегда противоположна полярности ведущего пятна. В следующем цикле полярность ведущих и хвостовых пятен меняется на противоположную. Одновременно с этим меняется полярность и общего магнитного поля Солнца, полюсы которого находятся вблизи полюсов вращения. Поэтому правильнее говорить не об 11-летнем, а о 22-летнем цикле солнечной активности (цикл Хейла, 1919).

Цикл солнечной активности по Бэбкоку (Babcock H.W.)

В современных моделях гелиомагнитного динамо общепринято считать, что тороидальное поле создается из полоидального дифференциальным вращением конвективной зоны Солнца. Одну из первых таких моделей предложил Гораций Бэбкок (1961).

В эпоху минимума магнитное поле Солнца близко к полю диполя: противоположные полярности сконцентрированы у полюсов (рис. а). Магнитные силовые линии, увлекаемые вращением внешних слоев, вытягиваются вдоль экватора и несколько раз обвиваются вокруг Солнца (б, в). Это усиливает поле (так называемый омега эффект).

Согласно гипотезе Бэбкока, биполярные группы солнечных пятен возникают при всплывании петель силовых линий магнитного поля (г) в областях наибольшего его усиления.

В местах выхода силовых линий возникает пятно северной полярности, а в местах входа — южной (д).

Дальнейший распад биполярных областей поля происходит так, что остаточные поля мигрируя к полюсам перемагничивают их на полярности, противоположные исходным, и процесс повторяется в следующем цикле, но со сменой последовательности знака магнитного поля на противоположный (е), что объясняет закон Хейла.

Циклы солнечной активности от SOHO (ESA & NASA) (1996-2006 гг.)
Слева в лучах ионизированного гелия (He II 304 Å), справа в лучах ионизированного железа (Fe XV 284 Å)

Прогнозируем солнечный цикл

В феврале 2019 года уровень коротковолнового излучения Солнца, который последние месяцы и так находился на рекордно низком уровне, уменьшился еще примерно в 100 раз и упал ниже порога чувствительности приборов — на графиках солнечной активности, отражающих данные из космоса в режиме реального времени, вместо обычной зубчатой линии зафиксирована почти ровная прямая. О том, что это означает и как связано с ожиданием нового цикла солнечной активности, рассказывает сотрудник Лаборатории рентгеновской астрономии Солнца ФИАН, доктор физико-математических наук Сергей Богачев.

Солнце в минимуме активности — февраль 2019 года. Изображение телескопа AIA на обсерватории SDO

Физический институт имени Лебедева РАН

Декабрь 2018 и январь 2019 года должны были разделить не только прошедший и наступивший календарный год. По некоторым прогнозам, именно по этим месяцам должен был пройти раздел между 24-м и 25-м циклами солнечной активности. Уже сейчас можно говорить, что этого не произошло.

Прошедший 24-й цикл «умирает, но не сдается», периодически напоминая о себе отдельными солнечными пятнами и активными областями. Новый же цикл тоже время от времени показывает, что он где-то рядом (еще в конце прошлого года на Солнце были зарегистрированы магнитные поля новой полярности), но, в целом, вступать в силу не хочет.

В результате Солнце все глубже уходит в состояние минимума активности и уже провалилось под порог чувствительности солнечных космических мониторов. Вот уже больше двух недель на графиках солнечной активности, поступающих с аппаратов НАСА GOES, рисуется прямая линия. Такая ситуация может быть поводом порассуждать, насколько вообще благодарное дело — прогноз солнечного цикла, и есть ли смысл вообще заглядывать в будущее или лучше просто смириться решения самого солнца.

Сразу скажем, прогнозирование солнечного цикла — одна из самых популярных тем, особенно широко привлекающая астрономов-любителей. Действительно, это тематика, для которой не требуется специальных знаний. Есть канонический ряд солнечной активности, измеряемый с 1749 года и доступный в цифрах, например, на сайте Королевской обсерватории Бельгии. Остается только взять и найти в нем закономерности, которые затем экстраполировать в будущее.

Канонический ряд солнечной активности, измеряемой по количеству солнечных пятен в году

Королевская обсерватория Бельгии

Ничего плохого в таком занятии нет, это вполне корректная научная задача. Надо лишь понимать, что в силу простоты этой задачи за нее уже бралось огромное количество людей. И решить ее не удалось.

Проблема в том, что солнечный цикл очень уж нестабилен. Да, он меняется со средним шагом около 11 лет. Однако отдельные циклы могут иметь продолжительность 9 лет (как, например, цикл № 2, продолжавшийся с июня 1766 до июня 1775 года). Другие же могут длиться более 12 лет. Рекордным в этом смысле является цикл № 6, наблюдавшийся с августа 1810 по май 1816 года.

Читать еще:  Как не попасть в секту

Различаются солнечные циклы и по высоте. Самыми «низкими» были циклы 5 и 6 (с апреля 1798 по май 1823 года). Индекс числа пятен (используется для сравнения циклов друг с другом) в максимуме тогда составил 82. Для сравнения, в максимуме 19-го цикла, который продолжался с апреля 1954 по октябрь 1964 года и является самым сильным из наблюдавшихся, индекс числа пятен в максимуме был 285, то есть в 3,5 раза больше.

Можно ли найти закономерности в этих отклонениях? Наверное, можно, если бы мы начали наблюдать Солнце не 400, а несколько тысяч лет назад и накопили бы данные по сотням циклов. Но пока у нас есть только 24 точки, и, конечно, серьезную статистику из них не получишь. Какие-то закономерности, однако, можно выловить и из них, и некоторые видны невооруженным глазом.

Если присмотреться к каноническому ряду пятен, трудно отделаться от ощущения, что он модулируется каким-то более продолжительным периодом продолжительностью около 100 лет — именно с таким интервалом распределены особенно крупные максимумы. Такой период активности, действительно, есть и называется периодом Швабе (по имени астронома-любителя, впервые обнаружившего 11-летний цикл). Продолжительность цикла Швабе составляет 75-100 лет (среднее значение обычно полагают равным 87).

Чтобы получить представление о более продолжительных циклах, прямых наблюдений Солнца уже недостаточно. Один из способов раздобыть такие данные — так называемая научная археология, основанная, в частности, на изучении исторического распределения радиоактивного углерода 14 C.

Солнечная активность, отражаемая в распределении радиоактивного углерода 14 C, 1100–1700 годы

Углерод этот распадается с периодом 5700 лет и должен все время чем-то производиться. Производится он Солнцем, точнее, приходящими от солнечных вспышек нейтронами. Достигая атмосферы Земли, они бомбардируют атомы азота 14 N, выбивают из их ядра протон и встают на его место. Получается элемент с той же массой 14, но с зарядом ядра ниже на 1. Это как раз 14 C.

Так как углерод 14 C радиоактивен, то он достаточно легко обнаруживается в антарктических льдах или срезах деревьев. Остается лишь пересчитать его обилие в уровень солнечной активности. Так получаются полугипотетические солнечные циклы. Самый короткий из них — 210 лет, иногда (правда, очень редко) называемый циклом Зюсса. Некоторые его признаки можно найти и в каноническом ряде из 24 циклов.

Более длинным является двухтысячелетний цикл, продолжительность которого равна 2300 лет. Очень неуверенно различается следующая огибающая, равная примерно 10 тысячам лет. Дальше же начинается область «научной фантастики», в которой можно встретить самые разнообразные теории, вплоть до гигантских циклов от сотен тысяч до сотен миллионов лет, коррелирующих с массовыми вымираниями видов и глобальными изменениями климата.

12-тысячелетнее изменение активности Солнца

И все же, действительно ли прогнозирование цикла отдано любителям астрономии и геологам с археологами? Неужели тут совсем нет места профессиональным астрономам-солнечникам? Нет, конечно, это не так. Дело в том, что космическая эпоха открыла совершенно новые возможности для изучения солнечной активности. Это и наблюдение магнитных полей, и измерение скорости солнечного ветра, и детектирование солнечных вспышек. Наконец, те же солнечные пятна с помощью современных телескопов можно считать намного точнее, чем 400 лет назад.

Все это открыло дорогу для большого числа новых методов прогноза, основанных на данных современных наблюдений. Достаточно перечислить некоторые названия работ, посвященных прогнозу предстоящего 25-го цикла, вышедших в печати в последние несколько лет:

  • Имада и др., 2017, «Предсказание 25-го солнечного цикла на основе модели переноса магнитного потока» — не сообщают о времени начала и максимума цикла, но прогнозируют, что он будет на несколько десятков процентов слабее текущего.
  • Шарп и др., 2018, «Нелинейный подход к предсказанию 25 солнечного цикла» — предсказывают максимум в 2023 году, а индекс числа пятен равным 154 (в прошедшем 24-м цикле он был равен 116).
  • Хоуэ и др. «Признаки 25-го солнечного цикла в приповерхностных зональных течениях» — прогнозируют, что новый цикл начнется не ранее середины 2019 года.

Это ряд можно продолжать, но есть одна проблема, которую принципиально не могут преодолеть современные методы. Люди научились с высокой точностью измерять магнитные поля, регистрировать вспышки и обнаруживать потоки плазмы всего-то 20-30 лет назад. До этого они лишь считали солнечные пятна. И какой бы замысловатой ни была современная модель, протестировать ее на всем известном ряде солнечных циклов нельзя. Отсюда и невысокая точность этих исследований, и низкий уровень достоверности.

Нельзя забывать и о самой главной проблеме — мы до сих пор не знаем, почему у Солнца появился и существует 11-летний цикл. И пока не будет создано его строгой теоретической модели, мы так и будем блуждать впотьмах.

Что же касается текущего цикла, то все же наиболее вероятным является сценарий, что он запустится в середине или, в крайнем случае, во второй половине текущего года. Если этого не произойдет, это потребует уже вполне серьезного научного объяснения. Остается набраться терпения.

Источники:

http://light-science.ru/kosmos/solnechnaya-sistema/solnechnye-tsikly.html
http://osiktakan.ru/astr_sun/ss_sun3.html
http://nplus1.ru/blog/2019/03/08/sun-cycles-prognosis

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector