Как устроен космос
Космическое пространство
Космическое пространство (космос) — относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел. Вопреки распространённым представлениям, космос не является абсолютно пустым пространством — в нём существует очень низкая плотность некоторых частиц (преимущественно водорода), а также электромагнитное излучение и межзвездное вещество. Слово «космос» имеет несколько различных значений. Иногда под космосом понимают всё пространство вне Земли, включая небесные тела.
Содержание
Границы
Чёткой границы не существует, потому что атмосфера разрежается постепенно по мере удаления от земной поверхности, и до сих пор нет единого мнения, что считать фактором начала космоса. Если бы температура была постоянной, то давление бы изменялось по экспоненциальному закону от 100 кПа на уровне моря до нуля. Международная авиационная федерация в качестве рабочей границы между атмосферой и космосом установила высоту в 100 км (линия Кармана), потому что на этой высоте для создания подъёмной аэродинамической силы необходимо, чтобы летательный аппарат двигался с первой космической скоростью, из-за чего теряется смысл авиаполёта [1] [2] [3] [4] .
Астрономы из США и Канады измерили границу влияния атмосферных ветров и начала воздействия космических частиц. Она оказалась на высоте 118 километров, хотя сами NASA считают границей космоса 122 км. На такой высоте шаттлы переключались с обычного маневрирования с использованием только ракетных двигателей на аэродинамическое с «опорой» на атмосферу [2] [3] .
Солнечная система
Пространство в Солнечной системе называют межпланетным пространством, которое переходит в межзвёздное пространство в точках гелиопаузы солнцестояния. Вакуум космоса на самом деле не является абсолютным — в нём присутствуют атомы и молекулы, обнаруженные с помощью микроволновой спектроскопии, реликтовое излучение, которое осталось от Большого Взрыва, и космические лучи, в которых содержатся ионизированные атомные ядра и разные субатомные частицы. Также есть газ, плазма, пыль, небольшие метеоры и космический мусор (материалы, которые остались от деятельности человека на орбите). Отсутствие воздуха делает космическое пространство (и поверхность Луны) идеальными участками для астрономических наблюдений на всех длинах волн электромагнитного спектра. Доказательством этого являются фотографии, полученные при помощи космического телескопа Хаббл. Кроме того, бесценную информацию о планетах, астероидах и кометах Солнечной системы получают с помощью космических аппаратов.
Воздействие пребывания в открытом космосе на организм человека
Как утверждают учёные НАСА, вопреки распространённым представлениям, при попадании в открытый космос без защитного скафандра человек не замёрзнет, не взорвётся и мгновенно не потеряет сознание, его кровь не закипит. Вместо этого настанет быстрая смерть от недостатка кислорода. Кроме того, со слизистых оболочек организма (язык, глаза, лёгкие) начнёт быстро испаряться вода. Некоторые другие проблемы — декомпрессионная болезнь, солнечные ожоги незащищённых участков кожи и поражение подкожных тканей — начнут сказываться уже через 10 секунд. В какой-то момент человек потеряет сознание из-за нехватки кислорода. Смерть может наступить примерно через 1-2 минуты, хотя точно это неизвестно. Тем не менее, если не задерживать дыхание в лёгких (попытка задержки приведёт к баротравме), то 30-60 секунд пребывания в открытом космосе не вызовут каких-либо необратимых повреждений человеческого организма. [5]
В НАСА описывают случай, когда человек случайно оказался в пространстве, близком к вакууму (давление ниже 1 Па) из-за утечки воздуха из скафандра. Человек оставался в сознании приблизительно 14 секунд — примерно такое время требуется для того, чтобы обеднённая кислородом кровь попала из лёгких в мозг. Внутри скафандра не возник полный вакуум, и рекомпрессия испытательной камеры началась приблизительно через 15 секунд. Сознание вернулось к человеку, когда давление поднялось до эквивалентного высоте примерно 4,6 км. Позже попавший в вакуум человек рассказывал, что он чувствовал и слышал, как из него выходит воздух, и его последнее осознанное воспоминание состояло в том, что он чувствовал, как вода на его языке закипает.
Журнал «Aviation Week and Space Technology» 13 февраля 1995 г. опубликовал письмо, в котором рассказывалось об инциденте, произошедшем 16 августа 1960 года во время подъёма стратостата с открытой гондолой на высоту 19,5 миль для совершения рекордного прыжка с парашютом (Проект «Эксельсиор»). Правая рука пилота оказалась разгерметизирована, однако он решил продолжить подъём. Рука, как и можно было ожидать, испытывала крайне болезненные ощущения, и ею нельзя было пользоваться. Однако при возвращении пилота в более плотные слои атмосферы состояние руки вернулось в норму. [6]
Границы на пути к космосу
- Уровень моря — 101,3 кПа (1 атм.; 760 мм рт. ст;) атмосферного давления.
- 4,7 км — МФА требует дополнительного снабжения кислородом для пилотов и пассажиров.
- 5,0 км — 50% от атмосферного давления на уровне моря.
- 5,3 км — половина всей массы атмосферы лежит ниже этой высоты.
- 6 км — граница постоянного обитания человека.
- 7 км — граница приспособляемости к длительному пребыванию.
- 8,2 км — граница смерти.
- 8,848 км — высочайшая точка Земли гора Эверест — предел доступности пешком.
- 9 км — предел приспособляемости к кратковременному дыханию атмосферным воздухом.
- 12 км — дыхание воздухом эквивалентно пребыванию в космосе (одинаковое время потери сознания
10—20 с); предел кратковременного дыхания чистым кислородом; потолок дозвуковых пассажирских лайнеров.
Условия для выхода на орбиту Земли
Для того, чтобы выйти на орбиту, тело должно достичь определённой скорости. Космические скорости для Земли:
Если же какая-либо из скоростей будет меньше указаной, то тело не сможет выйти на орбиту. Первым, кто понял, что для достижения таких скоростей при использовании любого химического топлива нужна многоступенчатая ракета на жидком топливе, был Константин Эдуардович Циолковский.
Интересные факты о космосе которые сложно себе представить (10 фото)
Космос прекрасен, но, вообще, весьма странный. Планеты вращаются вокруг звезд, которые умирают и снова гаснут, а все в галактике вращается вокруг сверхмассивной черной дыры, медленно засасывающей все, что подойдет слишком близко. Но иногда космос подбрасывает настолько странные вещи, что вы скрутите свой разум в крендель, пытаясь понять это.
Столпы Творения
Как однажды написал Дуглас Адамс, «космос большой. На самом деле большой. Вы даже представить не можете, насколько умопомрачительно он большой». Мы все знаем, что единицей измерения, которой измеряют расстояния в космосе, является световой год, но мало кто задумывается о том, что это означает. Световой год — это настолько большое расстояние, что свет — нечто, что движется быстрее всего во Вселенной — проходит это расстояние только за год.
Это означает, что когда мы смотрим на объекты в космосе, которые действительно далеки, вроде Столпов Творения (образования в туманности Орла), мы смотрим назад во времени. Как так получается? Свет из туманности Орла достигает Земли за 7000 лет и мы видим ее такой, какой она была 7000 лет назад, поскольку то, что мы видим — это отраженный свет.
Последствия этого заглядывания в прошлое весьма странные. К примеру, астрономы считают, что Столпы Творения были уничтожены сверхновой около 6000 лет назад. То есть этих Столпов уже просто не существует. Но мы их видим.
Туманность Красный Квадрат
Объекты в космосе по большей части весьма округлые. Планеты, звезды, галактики и форма орбит — все напоминает круг. Но туманность Красный Квадрат, облако газа интересной формы, хм, квадратная. Разумеется, астрономы весьма и весьма удивились, поскольку объекты в космосе не должны быть квадратными.
На самом деле, это не совсем квадрат. Если вы внимательно посмотрите на изображение, вы заметите, что в поперечнике форма образована двумя конусами в точке соприкосновения. Но опять же, в ночном небе не так много конусов. Туманность в форме песочных часов светится весьма ярко, поскольку в самом ее центре находится яркая звезда — там, где соприкасаются конусы. Вполне возможно, что эта звезда взорвалась и стала сверхновой, в результате чего кольца у основания конусов стали светиться интенсивнее.
Столкновения галактик
В космосе все постоянно движется — по орбите, вокруг своей оси или просто мчится через пространство. По этой причине — и благодаря невероятной силе притяжения — галактики сталкиваются постоянно. Возможно, вас это не удивит — достаточно посмотреть на Луну и понять, что космос любит удерживать мелкие вещи возле крупных. Когда две галактики, содержащие миллиарды звезд, сталкиваются, наступает локальная катастрофа, да?
На самом деле, в столкновениях галактик вероятность того, что две звезды столкнутся, практически равна нулю. Дело в том, что помимо того, что космос сам по себе велик (и галактики тоже), он также сам по себе довольно пустой. Поэтому его и называют «космическим пространством». Хотя наши галактики и смотрятся твердыми на расстоянии, не забывайте, что ближайшая к нам звезда находится на расстоянии 4,2 световых лет от нас. Это очень далеко.
Проблема горизонта
Космос — сплошная загадка, куда ни глянь. Например, если мы посмотрим в точку на востоке нашего неба и измерим радиационный фон, а затем проделаем то же самое в точке на западе, которая будет отделена от первой 28 миллиардами световых лет, мы увидим, что фоновое излучение в обеих точках одинаковой температуры.
Это кажется невозможным, потому что ничто не может двигаться быстрее света, и даже свету понадобилось бы слишком много времени, чтобы пролететь от одной точки к другой. Как мог микроволновой фон стабилизироваться почти однородно по всей вселенной?
Это может объяснить теория инфляции, которая предполагает, что вселенная растянулась на большие расстояния сразу после Большого Взрыва. Согласно этой теории, не Вселенная образовалась путем растягивания своих краев, а само пространство-время растянулось, как жвачка, в доли секунды. В это бесконечное короткое время в этом космосе нанометр покрывал несколько световых лет. Это не противоречит закону о том, что ничто не может двигаться быстрее скорости света, потому что ничто и не двигалось. Оно просто расширялось.
Представьте себе первоначальную вселенную как один пиксель в программе для редактирования изображений. Теперь масштабируйте изображение с коэффициентом в 10 миллиардов. Поскольку вся точка состоит из того же материала, ее свойства — и температура в том числе — однородны.
Как черная дыра вас убьет
Черные дыры настолько массивны, что материал начинает вести себя странно в непосредственной близости к ним. Можно представить, что быть втянутым в черную дыру — значит провести остаток вечности (или истратить оставшийся воздух), безнадежно крича в туннеле пустоты. Но не переживайте, чудовищная гравитация лишит вас этой безнадежности.
Сила гравитации тем сильнее, чем ближе вы к ее источнику, а когда источник представляет собой такое мощное тело, величины могут серьезно меняться даже на коротких дистанциях — скажем, высота человека. Если вы упадете в черную дыру ногами вперед, сила гравитации, воздействующая на ваши ноги, будет настолько сильной, что вы увидите, как ваше тело вытягивается в спагетти из линий атомов, которые затягиваются в самый центр дыры. Мало ли, вдруг эта информация будет для вас полезной, когда вы захотите нырнуть в чрево черной дыры.
Клетки мозга и Вселенная
Недавно физики создали имитацию начала вселенной, которая началась с Большого Взрыва и последовательности событий, которые привели к тому, что мы видим сегодня. Ярко-желтый кластер плотно упакованных галактик в центре и «сеть» менее плотных галактик, звезд, темной материи и прочего-прочего.
В то же время студент из Университета Брандиса исследовал взаимосвязь нейронов в мозге, разглядывая тонкие пластинки мозга мыши под микроскопом. Изображение, которое он получил, содержит желтые нейроны, связанные красной «сетью» соединений. Ничего не напоминает?
Два изображения, хотя и сильно отличаются своими масштабами (нанометры и световые года), поразительно похожи. Что это, обычный случай фрактальной рекурсии в природе, или вселенная действительно представляет собой клетку мозга внутри другой огромной вселенной?
Недостающие барионы
Согласно теории Большого Взрыва, количество материи во вселенной в конечном итоге создаст достаточное гравитационное притяжение, чтобы замедлить расширение вселенной до полной остановки. Однако барионная материя (то, что мы видим — звезды, планеты, галактики и туманности) составляет лишь от 1 до 10 процентов от всей материи, которая должна быть. Теоретики сбалансировали уравнение гипотетической темной материей (которую мы не можем наблюдать), чтобы спасти ситуацию.
Каждая теория, которая пытается объяснить странное отсутствие барионов, остается ни с чем. Самая распространенная теория гласит, что пропавшая материя состоит из межгалактической среды (дисперсный газ и атомы, плавающие в пустотах между галактиками), но даже с учетом этого у нас остается масса пропавших барионов. Пока у нас нет ни малейшего представления о том, где находится большая часть материи, которая должна быть на самом деле.
Холодные звезды
В том, что звезды горячие, никто не сомневается. Это так же логично, как и то, что снег белый, а дважды два — четыре. При посещении звезды мы бы больше переживали о том, как не сгореть, а не о том, как бы не замерзнуть — в большинстве случаев. Коричневые карлики — это звезды, которые весьма холодны по стандартам звезд. Не так давно астрономы обнаружили тип звезд под названием Y-карлики, которые представляют собой самый холодный подвид звезд в семействе коричневых карликов. Y-карлики холоднее, чем человеческое тело. При температуре в 27 градусов по Цельсию, можно спокойно пощупать такого коричневого карлика, прикоснуться к нему, если только его невероятная гравитация не превратит вас в кашу.
Эти звезды чертовски трудно обнаружить, поскольку они не выделяют практически никакого видимого света, поэтому искать их можно только в инфракрасном спектре. Ходят даже слухи, что коричневые и Y-карлики — это и есть та самая «темная материя», которая исчезла из нашей Вселенной.
Проблема солнечной короны
Чем дальше объект от источника тепла, тем он холоднее. Вот почему странно то, что температура поверхности Солнца составляет около 2760 градусов по Цельсию, а его корона (что-то типа его атмосферы) в 200 раз жарче.
Даже если могут быть какие-нибудь процессы, которые объясняют разницу температур, ни один из них не может объяснить настолько большую разницу. Ученые полагают, что это как-то связано с небольшими вкраплениями магнитного поля, которые появляются, исчезают и передвигаются по поверхности Солнца. Поскольку магнитные линии не могут пересекаться друг с другом, вкрапления перестраиваются каждый раз, когда подходят слишком близко, и этот процесс нагревает корону.
Хотя это объяснение может показаться аккуратным, оно далеко не изящно. Эксперты не могут сойтись во мнении о том, как долго живут эти вкрапления, не говоря уж о процессах, посредством которых они могли бы нагревать корону. Даже если ответ на вопрос кроется в этом, никто не знает, что заставляет эти случайные вкрапления магнетизма вообще появляться.
Черная дыра Эридана
Hubble Deep Space Field — это снимок, полученный телескопом Хаббла, на котором запечатлены тысячи удаленных галактик. Однако, когда мы смотрим в «пустой» космос в области созвездия Эридан, мы ничего не видим. Вообще. Просто черную пустоту, растянувшуюся на миллиарды световых лет. Почти любые «пустоты» в ночном небе возвращают снимки галактик, хоть и размытых, но существующих. У нас есть несколько методов, которые помогают определить то, что может быть темной материей, но и они оставляют нас с пустыми руками, когда мы смотрим в пустоту Эридана.
Одна спорная теория говорит о том, что пустота содержит сверхмассивную черную дыру, вокруг которой вращаются все ближайшие галактические скопления, и это высокоскоростное вращение совмещается с «иллюзией» расширяющейся вселенной. Другая теория говорит о том, что вся материя когда-нибудь склеится вместе, образовав галактические скопления, а между скоплениями со временем образуются дрейфующие пустоты.
Но это не объясняет вторую пустоту, обнаруженную астрономами в южном ночном небе, которая на этот раз примерно 3,5 миллиарда световых лет в ширину. Она настолько широка, что ее с трудом может объяснить даже теория Большого Взрыва, поскольку Вселенная не существовала настолько долго, чтобы такая огромная пустота успела сформироваться путем обычного галактического дрейфа. Может, когда-нибудь все эти загадки мироздания станут просто семечками в стакане, но не сегодня и не завтра.
Источник
С чего начинается космос и где кончается Вселенная
С чего начинается космос и где кончается Вселенная? Как ученые определяют границы важных параметров в космическом пространстве. Все не так просто и зависит от того, что считать космосом, сколько насчитывать Вселенных. Впрочем — ниже все подробно. И интересно.
Атмосфера
«Официальная» граница между атмосферой и космосом – линия Кармана, проходящая на высоте около 100 км. Ее выбрали не только из-за круглого числа: примерно на этой высоте плотность воздуха уже настолько мала, что ни один аппарат не может лететь, поддерживаясь одними лишь аэродинамическими силами. Чтобы создать достаточную подъемную силу, потребуется развить первую космическую скорость. Такому аппарату крылья уже не нужны, поэтому именно на 100-километровой высоте проходит граница между аэронавтикой и астронавтикой.
Но воздушная оболочка планеты на высоте 100 км, конечно, не заканчивается. Внешняя ее часть – экзосфера – простирается вплоть до 10 тыс. км, хотя и состоит уже, в основном, из редких атомов водорода, способных легко покидать ее.
Солнечная система
Наверное, ни для кого не секрет, что пластиковые модели Солнечной системы, к которым мы так привыкли со школы, не показывают истинные расстояния между звездой и ее планетами. Школьная модель сделана так лишь для того, чтобы все планеты поместились на подставке. В действительности, все куда масштабнее.
Итак, центр нашей системы – Солнце – звезда диаметром почти 1,4 млн. километров. Ближайшие к нему планеты – Меркурий, Венера, Земля и Марс – составляют внутреннюю область Солнечной системы. Все они имеют малое количество спутников, состоят из твердых минералов и (за исключением Меркурия) имеют атмосферу. Условно границу внутренней области Солнечной системы можно провести по Поясу астероидов, который находится между орбитами Марса и Юпитера, примерно в 2-3 раза дальше от Солнца, чем Земля.
Это царство гигантских планет и их многочисленных спутников. И первым из них является, конечно, громадный Юпитер, расположенный от Солнца примерно впятеро дальше, чем Земля. За ним следуют Сатурн, Уран и Нептун, расстояние до которого уже умопомрачительно велико – более 4,5 млрд. км. Отсюда до Солнца уже в 30 раз дальше, чем от Земли.
Если сжать Солнечную систему до размеров футбольного поля с Солнцем в качестве ворот, то Меркурий расположится в 2,5 м от крайней линии, Уран – у противоположных ворот, а Нептун – уже где-то на ближайшей парковке.
Самая удаленная галактика, которую астрономы сумели наблюдать с Земли – это z8_GND_5296, расположенная на расстоянии примерно 30 млрд. световых лет. Но самым далеким объектом, который возможно наблюдать в принципе, является реликтовое излучение, сохранившееся практически со времени Большого взрыва.
Ограниченная им сфера наблюдаемой Вселенной включает более 170 млрд. галактик. Представьте: если бы вдруг они превратились в горошины, ими можно было бы заполнить целый стадион «с горкой». Звезд здесь – сотни секстиллионов (тысяч миллиардов). Она охватывает пространство, которое тянется на 46 млрд. световых лет во всех направлениях. Но что лежит за ним – и где Вселенная заканчивается?
На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история, о которой мы как-нибудь еще расскажем.
Пояс, облако, сфера
Плутон, как известно, утратил статус полноценной планеты, перейдя в семейство карликов. К ним относятся вращающаяся неподалеку от него Эрида, Хаумеа, другие малые планеты и тела пояса Койпера.
Эта область исключительно далека и обширна, она тянется, начиная с 35‑ти расстояний от Земли до Солнца, и до 50-ти. Именно из пояса Койпера во внутренние области Солнечной системы прилетают короткопериодические кометы. Если вспомнить наше футбольное поле, то пояс Койпера находился бы в нескольких кварталах от него. Но и здесь до границ Солнечной системы еще далеко.
Облако Оорта пока остается местом гипотетическим: уж очень оно далеко. Однако существует немало косвенных свидетельств того, что где-то там, в 50-100 тыс. раз дальше от Солнца, чем мы, находится обширное скопление ледяных объектов, откуда к нам прилетают долгопериодические кометы. Это расстояние так велико, что составляет уже целый световой год – четверть пути до ближайшей звезды, а в нашей аналогии с футбольным полем – в тысячах километрах от ворот.
Но гравитационное влияние Солнца, пускай и слабое, простирается еще дальше: внешняя граница облака Оорта – сфера Хилла – находится на расстоянии двух световых лет.
Рисунок, иллюстрирующий предполагаемый вид облака Оорта
Гелиосфера и гелиопауза
Не стоит забывать, что все эти границы являются довольно условными, как та же линия Кармана. За такую условную границу Солнечной системы считают не облако Оорта, а область, в которой давление солнечного ветра уступает межзвездному веществу – край ее гелиосферы. Первые признаки этого наблюдаются на расстоянии примерно в 90 раз большем от Солнца, чем орбита Земли, на так называемой границе ударной волны.
Окончательная остановка солнечного ветра должна происходить в гелиопаузе, уже в 130-ти таких дистанций. В такую даль не добирались еще ни одни зонды, кроме американских Voyager-1 и Voyager-2, запущенных еще в 1970-х годах. Это самые далекие на сегодня искусственно созданные объекты: в прошлом году аппараты пересекли границу ударной волны, и ученые с волнением следят за данными, которые зонды время от времени присылают домой на Землю.
Пузырь в рукаве
Все это – и Земля с нами, и Сатурн с кольцами, и ледяные кометы облака Оорта, и само Солнце – мчится в очень разреженном Местном межзвездном облаке, от влияния которого нас как раз и ограждает солнечный ветер: за пределы границы ударной волны облачные частицы практически не проникают.
На таких расстояниях пример с футбольным полем окончательно теряет удобство, и нам придется ограничиться более научными мерами длины – такими, как световой год. Местное межзвездное облако тянется примерно на 30 световых лет, и через пару десятков тысяч лет мы его покинем, войдя в соседнее (и более обширное) G-облако, где сейчас находятся соседние с нами звезды – Альфа Центавра, Альтаир и другие.
Все эти облака появились в результате нескольких древних взрывов сверхновых, которые образовали Местный пузырь, в котором мы движемся уже минимум последние 5 млрд. лет. Он тянется уже на 300 световых лет и входит в состав рукава Ориона – одного из нескольких рукавов Млечного пути. Хотя он гораздо меньше других рукавов нашей спиральной галактики, его размеры на порядки больше Местного пузыря: более 11 тыс. световых лет в длину и 3,5 тыс. в толщину.
3D представление Местного пузыря (Белый) с примыкающим Местным межзвездным облаком (розовый) и частью Пузыря I (зеленый).
Млечный путь в своей группе
Расстояние от Солнца до центра нашей галактики составляет 26 тыс. световых лет, а диаметр всего Млечного пути достигает 100 тыс. световых лет. Мы с Солнцем остаемся на его периферии, вместе с соседними звездами вращаясь вокруг центра и описывая полный круг примерно за 200 – 240 млн. лет. Удивительно, но когда на Земле царили динозавры, мы были на противоположной стороне галактики!
К диску галактики подходят два мощных рукава – Магелланов поток, включающий газ, перетянутый Млечным путем от двух соседних карликовых галактик (Большого и Малого Магеллановых облаков), и поток Стрельца, куда входят звезды, «оторванные» от другой карликовой соседки. С нашей галактикой связаны и несколько небольших шаровых скоплений, а сама она входит в гравитационно связанную Местную группу галактик, где их насчитывается около полусотни.
Ближайшая к нам галактика – Туманность Андромеды. Она в несколько раз больше Млечного пути и содержит около триллиона звезд, находясь от нас на 2,5 млн. световых лет. Граница же Местной группы находится и вовсе на умопомрачительном удалении: диаметр ее оценивается в мегапарсек – чтобы преодолеть это расстояние, свету понадобится около 3,2 млн. лет.
Но и Местная группа бледнеет на фоне крупномасштабной структуры размерами около 200 млн. световых лет. Это – Местное сверхскопление галактик, куда входит около сотни таких групп и скоплений галактик, а также десятки тысяч отдельных галактик, вытянутых в длинные цепочки – филаменты. Дальше только – границы наблюдаемой Вселенной.
Вселенная и дальше?
На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история.
Источники:
http://dic.academic.ru/dic.nsf/ruwiki/8517
http://vizitron.ru/kosmos/interesnyie-faktyi-o-kosmose-kotoryie-slozhno-sebe-predstavit-10-foto.html
http://ogend.ru/nu/s-chego-nachinaetsya-kosmos-i-gde-konchaetsya-vselennaya.html