Что такое интерференция в тонких пленках
Интерференция в тонких плёнках
Рассмотрели явление интерференции световых волн от двух точечных источников света. Однако часто нам приходится иметь дело с протяжёнными источниками света при явлениях интерференции, наблюдаемых в естественных условиях, когда источником света служит участок неба, т.е. рассеянный дневной свет. Наиболее часто встречающийся и весьма важный случай подобного рода имеет место при освещении тонких прозрачных плёнок, когда необходимое для возникновения двух когерентных пучков расщепление световой волны происходит вследствие отражения света передней и задней поверхностями плёнки.
Явление это, известное под названием цветов тонких плёнок, легко наблюдается на мыльных пузырях, на тончайших пленках масла или нефти, плавающих на поверхности воды, и т.д.
Пусть на прозрачную плоскопараллельную пластинку падает плоская световая волна, которую можно рассматривать как параллельный пучок волн.
Пластинка отражает два параллельных пучка света, из которых один образовался за счет отражения от верхней поверхности пластинки, второй – вследствие отражения от нижней поверхности каждый из этих пучков представлен только одним лучом).
Рисунок 2. Интерференция в тонких пленках.
При входе в пластинку и при выходе из нее второй пучок претерпевает преломление. Кроме этих двух пучков, пластинка отражает пучки, возникающие в результате трех -, пяти – и т.д. кратного отражения от поверхности пластинки. Однако ввиду их малой интенсивности это пучки принимать во внимание мы не будем. Разность хода, приобретенная лучами 1 и 2 до того, как они сойдутся в точке С, равна , (8) где S1 – длина отрезка ВС; S2 – суммарная длина отрезков АО и ОС; n – показатель преломления пластинки.
Показатель преломления среды, окружающей пластинку, полагаем равным единице, b – толщина пластинки. Из рисунка видно, что:
;
,
подставив эти значения в выражение (8) и произведя простые вычисления легко привести формулу (9) для разности хода Δ к виду
. (9)
Однако, при вычислении разности фаз между колебаниями в лучах 1 и 2 нужно, кроме оптической разности хода Δ, учесть возможность изменения фазы волны в точке С, где отражение происходит от границы раздела оптически менее плотной среды. Поэтому фаза волны претерпевает изменение на π. В итоге между 1 и 2 возникает дополнительная разность фаз, равная π. Ее можно учесть, добавив к Δ (или вычтя из нее) половину длины волны в вакууме. В результате получим
(10)
Интенсивность зависит от величины оптической разности хода (10). Соответственно, из условий (5) и (6) при получаются максимумы, а при
– минимумы интенсивности (m – целое число).
Тогда условие максимума интенсивности имеет вид:
, (11)
а для минимума освещенности имеем
. (12)
При освещении светом плоскопараллельной пластинки (b = const ) результаты интерференции зависят только от углов падения на плёнку. Интерференционная картина имеет вид чередующихся криволинейных тёмных и светлых полос. Каждой из этих полос соответствует определённое значение угла падения. Поэтому они называются полосами или линиями равного наклона. Если оптическая ось линзы L перпендикулярна к поверхности плёнки, полосы равного наклона должны иметь вид концентрических колец с центром в главном фокусе линзы. Это явление используется на практике для весьма точного контроля степени плоскопараллельности тонких прозрачных пластинок; изменение толщины пластинок на величину порядка 10 -8 м уже можно обнаружить по искажению формы колец равного наклона.
Интерференционные полосы на поверхности плёнки в виде клина имеют равную освещённость на всех точках поверхности, соответствующих одинаковым толщинам плёнки. Интерференционные полосы параллельны ребру клина. Их называют интерференционными полосами равной толщины.
Формула (10) выведена для случая наблюдения интерференции в отраженном свете. Если интерференционные полосы равного наклона наблюдаются в тонких пластинках или плёнках, находящихся в воздухе на просвет (в проходящем свете), то потери волны при отражении не произойдёт и разность хода Δ будет определяться по формуле (9). Следовательно, оптические разности хода для проходящего и отражённого света отличаются на λ/2, т.е. максимумам интерференции в отражённом свете соответствуют минимумы в проходящем свете, и наоборот.
Кольца Ньютона.
Полосы равной толщины можно получить, если положить плосковыпуклую линзу с большим радиусом кривизны R на плосковыпуклую пластинку. Между ними также образуется воздушный клин. В этом случае полосы равной толщины будут иметь вид колец, которые называются кольцами Ньютона; разность хода интерферирующих лучей, так же и в предыдущем случае, будет определяться по формуле (10).
Определим радиус k-го кольца Ньютона: из треугольника ABC имеем , откуда, пренебрегая b 2 , так как R>> b, получим
.
Рисунок 3. Кольца Ньютона
Подставляем это выражение в формулу (10):
(13)
Если эта разность хода равна целому числу длин волн (условие максимума интерференции), то для радиуса k-го светлого кольца Ньютона в отраженном свете или тёмного в проходящем имеем:
. (14)
Произведя аналогичные несложные выкладки, получим формулу для определения радиусов тёмных колец в отражённом свете (или светлых в проходящем):
(15).
Интерференция света
Интерференция света
Явление интерференции свидетельствует о том, что свет — это волна.
Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.
Условия интерференции
Волны должны быть когерентны. Когерентность – согласованность. В простейшем случае когерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз.
Все источники света, кроме лазера, некогерентны, однако Т. Юнг впервые пронаблюдал (1802) явление интерференции, разделив волну на две с помощью двойной щели.
Свет от точечного монохроматического источника S падал на два небольших отверстия на экране. Эти отверстия действуют как два когерентных источника света S1 и S2.
Волны от них интерферируют в области перекрытия, проходя разные пути: ℓ1 и ℓ2.
На экране наблюдается чередование светлых и темных полос.
Условие максимума.
Пусть разность хода между двумя точками ,
тогда условие максимума:
т. е. на разности хода волн укладывается четное число полуволн (k= 1, 2, 3, . ).
Условие минимума
Пусть разность хода между двумя точками ,
тогда условие минимума: ,
т. е. на разности хода волн укладывается нечетное число полуволн (k= 1, 2, 3, . ).
Интерференция света в тонких пленках
Различные цвета тонких пленок — результат интерференции двух волн, отражающихся от нижней и верхней поверхностей пленки. При отражении от верхней поверхности пленки происходит потеря полуволны. Следовательно, оптическая разность хода .
Тогда условие максимального усиления интерферирующих лучей в отраженном свете следующее: .
Если потерю полуволны не учитывать, то .
Кольца Ньютона
Интерференционная картина в тонкой прослойке воздуха между стеклянными пластинами — кольца Ньютона.
Волна 1 — результат отражения ее от точки А (граница стекло —воздух). Волна 2 — отражение от плоской пластины (точка В, граница воздух — стекло). Волны когерентны: возникает интерференционная картина в прослойке воздуха между точками А и В в виде-концентрических колец. Зная радиусы колец, можно вычислить длину волны, используя формулу , где r – радиус кольца, R — радиус кривизны выпуклой поверхности линзы.
Использование интерференции в технике
Проверка качества обработки поверхности до одной десятой длины волны. Несовершенство обработки определяют но искривлению интерференционных полос, образующихся при отражении света от проверяемой поверхности. Интерферометры служат для точного измерения показателя преломления газов и других веществ, длин световых волн.
Просветление оптики. Объективы фотоаппаратов и кинопроекторов, перископы подводных лодок и другие оптические устройства состоят из большого числа оптических стекол, линз, призм. Каждая отполированная поверхность стекла отражает около 5% падающего на нее света. Чтобы уменьшить долю отражаемой энергии, используется явление интерференции света.
На поверхность оптического стекла наносят тонкую пленку. Для того чтобы волны 1 и 2 ослабляли друг друга, должно выполняться условие минимума. В отраженном свете разность хода волн равна: . Потеря полуволны происходит при отражении как от пленки, так и от стекла (показатель преломления стекла больше, чем пленки), поэтому, эту потерю можно не учитывать. Следовательно,
, где n – показатель преломления пленки; h — толщина пленки. Минимальная толщина пленки будет при k=0. Поэтому
. При равенстве амплитуд гашение света будет полным. Толщину пленки подбирают так, чтобы полное гашение при нормальном падении имело место для длин волн средней части спектра (для зеленого цвета):
.
Чтобы рассчитать толщину пленки в этой формуле необходимо взять длину волны и показатель преломления зеленого света.
Лучи красного и фиолетового цвета ослабляются незначительно.поэтому объективы оптических приборов в отраженном свете имеют сиреневые оттенки
Интерференция в тонких пленках
При освещении тонкой прозрачной пластинки или пленки можно наблюдать интерференцию световых волн, отраженных от верхней и нижней поверхностей пластинки (рис. 26.4). Рассмотрим плоскопараллельную пластинку толщины / с показателем преломления п> на которую под углом а падает плоская монохроматическая волна с длиной волны X. Предположим для определенности, что луч падает на пластинку из воздуха с показателем преломления
а пластинка лежит на подложке с показателем преломления
Такая ситуация имеет место, например, при интерференции в тонкой пластинке или пленке, окруженной воздухом.
Найдем оптическую разность хода интерферирующих лучей 2 и 3 между точкой А и плоскостью CD. Именно эта разность определяет интерференционную картину, поскольку расположенная далее собирающая линза (или глаз) лишь сводит два интерферирующих луча в один. При этом надо учесть, что в соответствии с опытом отражение от оптически более плотной среды в точке А ведет к изменению фазы на Х/2 (на противоположную), а отражение от оптически менее плотной среды в точке В не ведет к изменению фазы волны. Таким образом, набирается оптическая разность хода интерферирующих лучей 2 и 3, равная
Из аАВО следует, что
Из aACD с учетом закона преломления-= п имеем
AD = АС sina = 2/10sina = 2/tgPsina = 2w/tgpsinp = 2rc/sin 2 p/cosp.
Тогда оптическая разность хода равна
Эту формулу удобней анализировать, если из закона преломления выразить угол преломления через угол падения:
Из условия максимума (26.19) имеем
В свою очередь условие минимума (26.20) дает
(в последней формуле нумерация целых чисел для упрощения вида формулы сдвинута на единицу).
Согласно формулам в зависимости от угла падения монохроматического света пластинка в отраженном свете может выглядеть светлой или темной. Если пластинку освещать белым светом, то условия максимума и минимума могут выполняться для отдельных длин волн и пластинка выглядит окрашенной. Этот эффект можно наблюдать на стенках мыльных пузырьков, на пленках масла и нефти, на крыльях насекомых и птиц, на поверхности металлов при их закалке (цвета побежалости).
Если монохроматический свет падает на пластинку переменной толщины, то условия максимума и минимума определяются толщиной /. Поэтому пластинка выглядит покрытой светлыми и темными полосами. При этом в клине — это параллельные линии, а в воздушном промежутке между линзой и пластинкой — кольца (кольца Ньютона).
Прямое отношение к интерференции в тонких пленках имеет просветление оптики. Как показывают расчеты, отражение света приводит к уменьшению интенсивности прошедшего света на несколько процентов даже почти при нормальном падении света на линзу. Учитывая, что современные оптические устройства содержат достаточно большое количество линз, зеркал, светоделительных элементов, потери интенсивности световой волны без применения специальных мер могут стать значительными. Для уменьшения потерь на отражение используется покрытие оптических деталей пленкой со специальным образом подобранными толщиной / и показателем преломления пи. Идея уменьшения интенсивности отраженного света от поверхности оптических деталей состоит в интерференционном гашении волны, отраженной от внешней поверхности пленки, волной, отраженной от внутренней поверхности пленки (рис. 26.5). Для осуществления этого желательно, чтобы амплитуды обеих волн были равны, а фазы отличались на 180°. Коэффициент отражения света на границе сред определяется относительным показателем преломления сред. Так, если Рис. 26.5
свет проходит из воздуха в линзу с показателем преломления пу то условие равенства относительных показателей преломления на входе в пленку и выходе из нее сводится к соотношению
Толщина пленки подбирается исходя из условия, чтобы дополнительный набег фазы света был равен нечетному числу полуволн. Таким способом удается ослабить отражение света в десятки раз.
Источники:
http://studopedia.ru/2_37091_interferentsiya-v-tonkih-plenkah.html
http://www.eduspb.com/node/1808
http://studme.org/130251/matematika_himiya_fizik/interferentsiya_tonkih_plenkah